**Supporting Information** 

## **Two-Dimensional Hydrous Silica: Nanosheets and**

## **Nanotubes Predicted from First-Principles Simulations**

C.M. Fang\*, A. van Blaaderen, M. A. van Huis\*

Soft Condensed Matter (SCM), Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.

Email: c.fang@uu.nl; m.a.vanhuis@uu.nl

|                             | Method     | Cube   | Bond lengths and    |                    | Charge                             | Energy    |
|-----------------------------|------------|--------|---------------------|--------------------|------------------------------------|-----------|
|                             |            | length | bond angles         |                    |                                    | (eV/cell) |
| A. Water                    | optB86-vdW | 16.5 Å | d(O-H):             | 0.971 Å            | $H^{+0.56}{}_{2}O^{-1.12}$         | -13.641   |
| molecule                    |            |        | Angle H-O-H: 104.8° |                    |                                    |           |
| B. Silicic acid<br>molecule | optB88-vdW | 20.0 Å | d(Si-O):<br>d(O-H): | 1.643 Å<br>0.968 Å | $Si^{+3.16}(O^{-1.39}H^{+0.60})_4$ | -49.480   |

Table S1. Calculated local bonding and total valence electron energies for an isolated water molecule and silicic acid molecule.



Figure S1. Angles (°) for typical Si-coordination in HSS sheets or/and HSNTs with hexagonal rings (a) and in anhydrous silica sheets or nanotubes (b).



Figure S2. Schematic structural model of an anhydrous silica nanotube with a diameter of about 0.5 nm.



Figure S3. Calculated dispersion curves for the 2D anhydrous silica bilayer sheet (see Figure 3a and 3b) and the 1D hydrous silica tube with a quarter of the –(OH) clusters pointing inwards (Figure 1a and 1b).